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SECTION I

INTRODUCTION

The flow field produced in the neighborhood of two intersecting
surfaces in supersonic flow has been a subject of interest to design
engineers for manv yvears. These corner flows appear repeatedly in
supersonic inlet systems, at wing-~fuselage intersections and in con-
junction with control surface deflections. The flow field near an
axial corner is a strong interference flow which significantly influ-
ences the expected values of heat transfer and skin friction. For
this reason, substantial effort has been expended in exploring the
details of these axial corner tlows.

The flow structure in a typical axial corner formed by supersonic
flow over two intersecting compression surfaces is shown in Figure 1.
The shock structure includes the shock waves produced bv the intersect-
ing wedges, the corner shock and the compression shock system which
occurs when moving along the wedge surfaces into the corner. The
triple points (where the corner shock, the wedge shocks and the embedded
shock waves intersect) are joined to the corner by a viscous shear laver.
The embedded shocks may produce separation in a plane normal to the
direction of flow. The structure of corner flow was first detailed in
the laminar case through the experiments of Charwat and Redekopp
(Ref. 1) and by West and Korkegi (Ref. 2) for turbulent flow.

Numerous studies of the flow in an axial corner have been conducted
using computational methods. Kutler (Ref. 3) and Shanker et al. (Ref. 4)

have solved for the inviscid flow in an axial corner using the assumption
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Figure 1. Axial Corner Flow
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of conical svmmetrv. While these investigators used shock capturin:,
Marconi (Ref. 5) recentlv presented an inviscid solution to the corner
flow problem using shock fitting. Results of these investigations
showed accurate resolution of the shock wave and shear laver locations
(for high Reynolds number experiments) although the peak pressure
levels are sometimes underpredicted because viscous interaction citects
are not included. An obvious disadvantage of these inviscid analvses
is that they cannot predict heat transfer or skin friction. C(resi
et al. (Ref. 6) and Rubin and Lin (Ref. 7) have studied the viscous
flow in an axial corner near the leading edge. Their results are for
a merged layer problem and are not valid at large distances from the
leading edge. Faced with the limitations inherent in the merged lave:r
and inviscid solutions, finite-difference methods were used to volve
the full Navier-Stokes equations for supersonic flow in an axial
corner. Shang and Hankey (Ref. 8) and Hung and MacCormack (Ref. Y}
have obtained solutions for the laminar flow case while solutions
for turbulent flow have been computed by Hung and MacCormack (Ret. 10)
and Shang et al. (Ref. 11). While the results from the solutions of
the Navier-Stokes equations agree well with experimental data, the
usefulness of this approach is severely restricted by the large com-
puter times required. Consequently, alternative methods of obtaining
solutions for axial corner flows need to be developed.

The fully three-dimensional flow in the axial corner suggests
that simplifying assumptions be made in order to reduce the required
computational times to reasonable levels. In inviscid flows the conical

flow assumption reduces a class of three-dimensional problems to an




essentially two-dimensional set. The conical flow assumption for
inviscid flows makes use of the fact that a significant length scale
is missing in the conical direction and the domain of interest is
bounded by conical boundaries. This leads to the requirement that

no variations in the radial direction can occur. This is a self-
similar solution which is the same for all constant radius planes but
scales linearly with the radius. The concept of conical flow is
strictly valid only for inviscid flows. However, the viscous portions
of the same flow fields, as observed in experiments, appear to be
strongly dominated by the inviscid flow.

Anderson (Ref. 12) suggested that in those flows strongly
dominated by the inviscid flow, a quick way of computing a solution
(which would include an estimate of heat transfer and skin friction)
would be to solve the Navier-Stokes equations in time on the unit
sphere with all derivatives in the radial direction set equal to
zero. This technique provides the proper shock structure but is
not a viscous conical flow. The local Reynolds number is determined
by the radial position where the solution is computed. Consequently,
the solution is not self-similar in the sense of inviscid conical
flow. The solution is scaled through the local Reynolds number
which remains in the resulting set of equations.

This simplifying assumption has been used by McRae (Ref. 13)
to compute the laminar flow over cones while Vigneron et al. (Ref. 14)
and Bluford (Ref. 15) used the same approach to determine the laminar

flow over a delta wing. McRae and Hussaini (Ref. 16) have solved
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for the turbulent flow over a cone at angle of attack. In all cases
the inviscid and viscous structure of the flow agrees quite well with
available experimental data which indicates that the original expec-
tations of this computational approach have been more than realized.
As a consequence, an estimate of both the inviscid and viscous structure
of the flows can be made without the long computer run times associated
with the full Navier-Stokes equations.

In the present study, the axial cornér flow problem is solved
for the first time using the unsteady, Navier-Stokes equations subject
to the local conical assumption. These equations are solved using an
explicit time dependent approach. Both shock fitting and shock captur-
ing techniques are used. The shock fitting technique is well suited
for computing a compression corner flowfield (see Figure 1) since the
wedge and corner shocks form one boundary of the computational region.
This shock boundary is treated as a moving discontinuity across which
the Rankine-Hugoniot equations are applied. All other internal shocks
are automatically '"captured” in the finite-difference solution. For
cases where both surfaces of the corner are not compression surfaces,
the shock fitting technique is not applicable and the shock capturing
approach is used throughout the flowfield. The present method is used
to compute two different supersonic internal corner flows and the

results are compared with experiment.
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SECTION TII

GOVERNING EQUATIONS

The Navier-Stokes equations for an unsteady three-dimensional

flow without body forces or external heat addition can be written

in non-dimensional, conservation-law form for a Cartesian coordinate

system as:
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The coefficient of thermal conductivity has been removed in the preceding
equations by assuming a constant Prandtl number. In this study, the
coefficient of viscosity i is given by Sutherland's equation and the

following perfect gas equations of state are used:
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p=(y - 1)pe
and (2)
T = ysz p/p

The equations have been nondimensionalized as follows (dimensional

quantities are denoted by a wavy bar or a subscript =)
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where L is the dimensional length defined by the Reynolds number
PV L
R =
‘L M (4)
The following conical transformation is introduced
o= X
B =y/x (5)
Y = z/x

and Eq. (1) becomes
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The assumption of local conical self-similaritv requires

JE
du

=0

and Eq. (6) reduces to
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L on the surface « = 1. The following generalized transtormat o,

then applied

=
W
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and the final forms of the governing e uations become
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and J 1s the Jacobian of the transformation:
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The partial derivatives which appear in the viscous terms of E, F and

G are transformed with the aid of the expressions

3 _ _ 9 _ 9.

i (BnB + YY\Y) n (BcB + YCY) s

3 _ ., 9 3

3y - g an * %R 3z (13)
3 _ ., 9 9

32 vyt oyt

The governing equations are a mixed set of hyperbolic-parabolic equations

which can be solved using a time-dependent technique.
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SECTION 111

NUMERICAL SOLUTION OF EQUATIONS

1. GRID GENERATION

The domain of computation on the surface a = 1 is limited by
the body and the outer shock for a shock-fitting calculation and is
limited by the body and an outer boundarv for the case of a shock-
capturing calculation. These two tvpes of computational domains
are illustrated in Figure 2 for an axial cornmer formed by two inter-
secting wedges.

The computational grid is formed (Ref. 14) in a similar manner
for both types of calculations. The [ = constant lines are generated
in the physical plane using straight rays which make an angle € with
the v axis and which emanate from the NJ grid points situated along
the body surface. Along each ray (which has a length §) NK grid
points are positioned. The location of the grid points is arbitrary
as long as they are regularly distributed. Normally they are clustered
near the wall in order to properly resolve the boundary layer. For
shock-fitting calculations, § represents the shock standoff distance
and is determined at each time step from the shock boundary condition.
For shock-capturing calculations, § remains fixed and is equal to
Zoax " % for the case illustrated in Figure 2(b). The choice of the
angle 6 for each ray depends on the problem to be solved. For the
shock~fitting configuration shown in Figure 2(a), O varies between
90° and 00, and for the shock-capturing configuration shown in Figure

2(b), 6 equals 90° for all rays.

11
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a) shock fitting
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b) shock capturing

2. Computational Domains in Physical Plane
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The computational planes (corresponding to the physical planes
of Figure 2) are shown in Figure 3. The grid in the computational
plane has the shape of a unit square with uniform spacing in each

direction given by

1 1 ,
An = g -1 AT = J7 o1

so that n = (k - 1)An and ¢ = (j - 1)Az.
For the calculations in this study, the physical and computational

planes are related by the relations

v(i, k) = yb(j) + s(j, k) cos [68(]j)] s

2(§, k) =z, (3) + s(j, k) sin [6())]

where s(j, k) is the stretching function

= n = n
s(i, k) = 5’1 -8 <§+—1—> -1 1+<‘3’r 1) l (16)

l B-1 B -1 ]’

which clusters more grid points near the wall (n = 1) as the stretching

parameter £ approaches one. The body grid points (yb, zb) can be
clustered using the same type of stretching function. For example,
in the shock-capturing configuration of Figure 2(b) the [ = constant
grid lines must be clustered near the § = 1 wall in order to properly
resolve the boundary layer.

The metrics nB, nY, CB and CY which appear in Eqs. (11) and (13)

are evaluated using the relations

13
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Figure 3. Computational Planes
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where the derivatives Rr, 2, Yﬂ and y_ are computed numericallyv with
[} 5 i
central differences in the regularlv spaced computational plane (Ref. 14).

The metric coefficient i is obtained from the differentiation of the

stretching function and is given by

no= 28se [{F%&% - (5 - )% 1n (§fi—l>l (18)
5-1/]

£

where Ce is the shock velocity described later.

2. FINITE DIFFERENCE SCHEME

The standard, unsplit, MacCormack finite-difference scheme (Ref. 17)
is used to solve the governing equations at each interior grid point.
This explicit scheme has second~order accuracy in both space and time.
When this algorithm is applied to Eq. (10), the following predictor-

corrector equations result:

t

n+l n n n n n n
- - At (= . At f= . .
Uik T U5k T AL (Fj+1,k - Fj,k> " n (Cj,kﬂ - Gj,k> T AEHy

_ntl _n _nt+l At _n+l  n+l At _ntl o+l
U = 1/2|U + U - — \F - — \G -G

i,k 55k T U5k T ar \Fyuk T Fi-n,k) T an Sk T Gkt
_n+1
- oe By (19)
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Using this finite-difference scheme, the computation is advanced in
time from the initial conditions until the steady-state solution is
reached. The allowable time step is computed using the empirical
formula of Ref. 18 which modifies the inviscid CFL condition to approx-
imately account for viscous effects. The fourth-order damping scheme
introduced by MacCormack and Baldwin (Ref. 17) is used to suppress

nonlinear instabilities.

3. BOUNDARY CONDITIONS

The flow conditions behind the shock boundary (for a shock-
fitting calculation) are determined using a procedure similar to the
one described in Ref. 18. At the beginning of the predictor step,
the shock standoff distances are computed using
n+l

S = 8" + At 5‘; (20)

where the shock velocity Gt is given by

2 9 2142
A [(BYC - YBC) + 8(’ + YC] - um(BYC - YBC)

+vy - w&BC /(YC cos 6 - B_ sin 6) (21)

C g

and V1 is the component of the fluid velocity normal to and measured
with respect to the moving shock. The flow variables behind the shock,
as well as Vl, can be readily determined using Rankine-Hugoniot rela-
tions (Ref. 19) once the pressures behind the shock are known. These
pressures are calculated using the standard MacCormack predictor equa-

tion at each grid point behind the shock. The corrector step is

16
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similar to the predictor step except that the shock standof{ distances
are evaluated using the modified Euler corrector

SRR " <<s’; + 52+1) 2 (22)

and the pressures behind the shock are computed using a modified
MacCormack corrector scheme in which the usual backward difference
for 3G/39n is replaced by a forward difference. The flow variables
along the outer boundaries, £ = 0 and £ = 1 in Figure 2(a) and

z = 0 and 1" = 0 in Figure 2(b), are determined by assuming flow
gradients parallel to the wall surfaces are zero. An exception to
this occurs along the outer boundaries in the vicinity of the corner
(z =0, n=0) in Figure 2(b) where freestream conditions can be
maintained. Along the wall boundaries, the velocities are set equal
to zero and the temperature is specified for an isothermal wall. The
pressure is determined by assuming the normal pressure gradient to
be zero and the density is then calculated using the equation of

state.

4. INITIAL CONDITIONS

The initial conditions for a shock fitting calculation are
obtained by patching together inviscid wedge flow solutions. The
initial conditions for a shock-capturing calculation are obtained by

specifying freestream flow conditions at each grid point.

17
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SECTION 1V

RESULTS

1. WEST AND KORKEGL CASE

The | resent method has been used to compute a supersonic internal
corner flowfield corresponding to a laminar experiment of West and
Korkegi (Ref. 2). The corner is formed by the intersection of two

wedges with identical wedge angles of 9.48°, The flow conditions are

M = 3.0 T =105 °K
o0 [+ 3]

Re. = 0.39 x 10° T =294 K
L w

Pr = 0.72 Yy = 1.4

The flowfield was computed using both the shock fitting and shock
capturing approaches. In the shock firting calculation, a mesh
consisting of 31 grid points in the n diiection an! 50 grid points
in the 7 direction was used and is shown in Figure 4 for the con-
verged solution. Since the present corner configuration is symmetric
the mesh could have been reduced to 31 X 25, however, the entire
corner region was computed here in order to serve as a check for
future nonsymmetrical calculations. The mesh was refined near the
walls using a stretching parameter B equal to 1.04. The body grid
points were clustered near the axis of symmetry (L = 1/2) using a
similar type of stretching function with a stretching parameter

equal to 1.12. The 0 angles required for the [ = constant grid lines

were obtained by letting these straight rays be the radii of a circle.

18
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The shock fitting calculation required about 5000 steps to
converge. It was necessary to reverse the finite differencing in
the ¢ direction in the region 0 < 7 < 1/2 in order to eliminate
a long period instability which appeared in the calculation. This
instability is believed to be due to the stagnation point located
at 7 = 1/2. Previous investigators (Refs. 17 and 18) encountered
a similar instability in the vicinity of an interior stagnation
point. This instability is caused by the inability of the finite-
difference scheme to readily distinguish a change in velocity direc-
tion when conservative variables are employed. The shock capturing
calculation does not encounter this instability because the stagna-
tion point is located at a corner of the computational domain.

The results of the shock fitting calculation are shown in Figures
5, 6, and 11. The flow structure in terms of density contours is
shown in Figure 5. The embedded shocks and boundary layers are
clearly visible in this contour plot. The locations of the shock
waves and slip surfaces are in excellent agreement with the experiment.
The thickening of the boundary layer outward from the embedded shock
is due to flow separation. This separated flow region is less exten-
sive than the region computed by Shang et al. (Ref. 11) using the
complete Navier-Stokes equations. The Mach number contours are shown
in Figure 6. These contours were drawn in increments (AM) of 0.1
starting at M = O.

The shock capturing calculation utilized a fixed mesh consisting
of 31 x 31 grid points and is shown in Figure 7. The mesh was refined

equally near both walls using a stretching parameter B equal to 1.01.
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Figure 5. Density Contours (shock fitting)
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Figure 7. Computational Mesh (shock capturing)
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This calculation also required about 5000 steps to converge to a steady
state. The density and Mach number contour plots for this calculation
are shown in Figures 8 and 9, respectively. These contour plots were
drawn with the same increments in density and Mach number as the pre-
vious contour plots, Figures 5 and 6. The advantage of using the shock
fitting procedure (whenever possible) is dramatically illustrated bv
comparing the contour plots for each tvpe of calculation. The shock

"sharper'" resolution of the flowfield

fitting solution exhibits a much
details. The impact pressures (normalized by the stagnation pressure)

are shown at various heights above one wedge surface in Figure 10. The
rise in the impact pressure (except for ;/x = 0.581) on the right-hand
side of the distribution is due to the imbedded shock wave. The impact
pressure rise in the y/x = 0.581 distribution is the result of the shock
wave from the other wedge surface. The depressions in the impact pressure
distributions are due to the slip surfaces which merge together near

y/x = 0.08.

The computed wall pressures for both the shock fitting and shock
capturing calculations are compared in Figure 11 with the experimental
data (Ref. 2) and the complete Navier-Stokes calculation of Shang et al.
(Ref. 11). As would be expected, the present wall pressure results do
not compare as well with the experiment as do the results from the com-
plete Navier-Stokes calculation. The computed pressure rise in the
separated flow region is less than that observed in the experiment.
However, the present method does give a good engineering approximation
to the wall pressure distribution at a fraction of the cost of a complete

Navier-Stokes calculation. The present shock capturing calculation
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required about 23 minutes of computer time on a CDC 7600 computer
while the shock fitting calculation required about 43 minutes. The
latter time could have been cut in half if the 31 X 25 mesh had been
used instead of the 31 x 50 mesh. The shock fitting technique requires
16%Z more computer time (per grid point per time step) than does the

shock capturing approach.

2. COOPER AND HANKEY CASE

The present method has been used to compute an unsymmetrical
internal corner flowfield corresponding to a laminar experiment of
Cooper and Hankey (Ref. 20). The inviscid details of this corner
configuration are shown in Figure 12. This particular configuration
offers a severe test for the present method since the flowfield is
not conical. The actual flowfield depends crucially on the proper
interaction of the flat plate boundary layer (and its induced shock)

with the wedge shock. The flow conditions of this test case are

M = 12.5 T = 367 %k
[e 8] o0

Re. = 1.21 x 10° T =31 %
L w

Pr = 0.72 y = 1.4

with a wedge angle of 15°. The flowfield was computed using the shock
capturing approach since the shock fitting approach is not applicable.
A mesh consisting of 31 X 31 grid points was used and is shown in
Figure 13. The mesh was refined near both walls using a stretching

parameter 8 equal to 1.0l.
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The calculation required about 4000 steps to converge to a steadvy
state. The results of this calculation are shown in Figures 134-20,
In Figure 14, a contour plot of the computed impact pressures is com-
pared with the corresponding contour plot (same ﬁp() from the Navie r-
Stokes calculations of Shang and Hankev (Ref. 8). The contour pio

of impact pressures from the present calculation compiares qualirat:..

with the contour plot from the Navier-Stokes calculaticn., H wowvr,
is obvious that the present analyvsis does not properly compiate © o
boundary layer thickness on the flat plate and consequentlv, ti.o

induced shock is not correctly located. In fact, the computed

ary layer thickness and the shock standoff distance are about il

the values obtained in the Navier-Stokes calculation. As a resalt,
the details of the computed interaction flowfield are compruessed down-
ward as seen in Figures 15 and 16. These figures compare the impact
pressure distributions at various heights above the flat plate. ‘tor

a given height, the present distribution compares reasonablv well with
the Navier-Stokes distributi n at twice that height. This suggests
that the present method could be used to obtain reasonable results

for the given problem if an appropriate Reynolds number were chosen
that gave the correct boundary layer thickness.

Contour plots for the computed densities, Mach numbers, and total
temperatures are shown in Figures 17, 18 and 19. The increments used
for these contour plots are Ap = 0.25, AM = 0.1, and Aft = 100 °K.

A comparison of the wall pressures is shown in Figure 20. Once again,
the present method gives a good engineering approximation to the wall

pressure distribution, As expected, the heat transfer results are
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Figure 14. Comparison of Impact Pressure Contours
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not in good agreement with the Navier-Stokes results. The computed
peak heat transfer rate is only 24% of the peak heat transfer rate
computed in Ref. 8. The present calculation required about 18

minutes of computer time on a CDC 7600 computer.




SECTION V

CONCLUSTONS

In this study, numerical solutions have been obtained for the
three~-dimensional, supersonic viscous flow in an internal corner.

These solutions were computed by solving the unsteady Navier-Stokes
equations subject to a local conical assumption. This assumption
permits a solution to be obtained at a fraction of the cost required
for a complete Navier-Stokes calculation because a given problem

is reduced from four dimensions (3 space, 1 time) to three dimensions
(2 space, 1 time).

The present method was used to compute a compression corner
flowfield corresponding to the laminar experiment of West and Korkegi.
Both a shock fitting and a shock capturing solution were obtained. The
computed locations of the shock waves and slip surfaces were in excellent
agreement with the experiment. As expected, the shock fitting approach
gave a much "'sharper" resolution of the flowfield. The two computed
wall Eressure distributions agreed reasonably well with each other and
with the experimental distribution. The present results were in much
better agreement with the full Navier-Stokes solution than previous
results computed using the assumption of inviscid conical flow.

The present method was also used to compute an unsymmetrical corner
flowfield corresponding to the laminar experiment of Cooper and Hankev.
This particular corner configuration is not truly conical and for this
reason, the present results agreed only qualitatively with the experi-

mental results. However, it would appear that if an appropriate
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